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ABSTRACT 
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parameters affecting the efficiency of energy harvesting. Results highlight the best 
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CONTENT 

1 Introduction 
This deliverable 6.4 is addressing the dynamic response, at the macroscale level of the HPWJ-
PD system, where the Bit-Rock-Interaction (BRI) response is recognized as the main source 
of nonlinearity and vibrations of the drilling structure.  
Modelling developments were therefore done to enable a parametric study of the influence of 
drilling operating parameters, BRI response, and typical design parameters of hammer-
intensifier system, on the longitudinal stress waves propagating in the drill string, which, in the 
hybrid HPWJ-PD system is harvested to provide power to a pressure intensifier. 
 
Drilling (field) data measurements of Down-The-Hole hammer (DTH) was provided by Drillstar 
in 2021, which indicates small WOB and high frequency longitudinal frequencies that may lead 
to insufficient energy to activate a vibrational intensifier to produce the targeted water jet 
pressure of 150 MPa. In 2022, the applicability of the pressure intensifier was further 
investigated in a modelling study carried out by UPC (see deliverable 5.2: “Report on 
modelling, prediction and feasibility of the intensifier..”) which confirms that the WOB required 
for an efficient use of the pressure intensifier is significantly higher (by a factor 10) to the WOB 
conventionally used with DTH hammer. Pulse-shape and duration of vibration patterns were 
also unfavourable. Consequently, alternative downhole intensifier solutions have been 
prioritized (such as screw motor or electromagnetic valve control solutions) for the 
development of a HPWJ-PD demonstrator during the Orchyd project period.  
 
Nevertheless, the modelling activities in deliverable 6.4 were carried out in order to investigate 
a wide range of parametric drilling configurations. This will allow a better understanding of the 
limit of applicability of such pressure intensifier, while paving the way for a more appropriate 
use where higher WOB can be applied, such as hybrid drilling technology combining rotary-
percussive and water jet drilling.  
Two models were thus established and applied in this study. The first model of the HPWJ-PD 
system is linear, as it simplifies the HPWJ module as a spring-mass-damping system 
connected to the drill string and the bit is treated as fixed point. Due to its linear nature, the 
response of this model to an harmonic force excitation can be calculated very efficiently using 
the matrix transfer method. Despite its simplicity, the model can highlight the critical role of the 
ratio of the loading frequency over the resonance frequency of the HPWJ module in harvesting 
energy from the drill string vibrations. Another utility of this model is to provide a benchmark 
for the semi-discretization method, which is used for computing the response of the nonlinear 
model. 
The nonlinear model HPWJ-PD system departs from the linear ones in three aspects. First, 
the model of the HPWJ intensifier is modified by introducing a nonlinear damper to represent 
the expulsion of fluid from the intensifier. With this model, the pressure of the fluid jetted by the 
HPWJ can be estimated. Second, a bi-linear spring model is introduced to describe the bit-
rock interaction in a more realistic way. Finally, two rheological models of the mud, Herschel–
Bulkley and Casson, have been adopted to estimate the damping coefficient caused by the 
drilling mud. The parametric analysis to assess the influence of the controlling numbers on the 
response of the intensifier is reported, for each model, in the sections "simulation results".  
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2 Linear Model 

2.1 Mathematical Model 
The linear model of the hybrid HPWJ-PD system is sketched in Figure 1, where a fixed 
boundary condition is applied at the bit end and a damper is attached to the right end to 
represent the impedance matching boundary condition. A harmonic force 𝑓(𝑡) = 𝐹!𝑠𝑖𝑛(𝜔!𝑡) is 
applied at the interface between the bit and hammer assemblies, and the intensifier system is 
simplified as a mass-spring-damper (MSD) system attached to the rod with its distance from 
the hammer-bit interface L2. 
 

 

Figure 1: Schematic diagram of the hammer excitation and pressure intensifier system. 

 

The axial dynamics of the rod is governed by a one-dimensional damped wave equation 

 

 "#!(%,')
"'!

+ 𝑘)
"#(%,')
"'

− 𝑐* "#
!(%,')
"%!

= 0, (1) 
 

 

where	𝑢(𝑥, 𝑡) represents the axial displacement of the rod at position	𝑥 ∈ [0, 𝐿] and time 𝑡, 𝐿 is 

the rod total length, 𝑐 = 8+
,
	is the axial wave velocity with 𝐸 and 𝜌 denoting, respectively, the 

Young’s modulus and density of the rod material, 𝑘) characterizes the axial viscous damping 
caused by the drilling mud. 

According to Figure 1 the boundary conditions at 𝑥 = 0 =and 𝑥 = 𝐿 are given by 

 

𝑢(0, 𝑡) = 0, (2) 
 

 

𝐸𝐴-
"#(.,')
"%

= −𝐶/
"#(.,')
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, (3) 
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where 𝐶/ is the damping value of the damper and impedance matching condition is applied 
when 𝐶/ =	𝐴-𝜌𝑐. 
The concentrated force at 𝑥0 =	𝐿0, representing the bit-hammer interaction, is expressed as 
 
 

𝐸𝐴0
"#
"%
=
%1%"#

= 𝐸𝐴*
"#
"%
=
%1%"$

+	𝐹!𝑠𝑖𝑛(𝜔!𝑡), (4) 
 

 

where 𝐿0 is the length of the first rod segment,	𝐴0 (𝐴*) are the cross-sectional area of the first 
(second) rod segment, 𝐹! and 𝜔! are the amplitude and frequency of the harmonic excitation, 
respectively. Similarly, the concentrated force at 𝑥0 = 𝐿0 + 𝐿* exerted by the MSD system to 
the rod is given by: 

 

𝐸𝐴*
"#
"%
=
%1%!#

= 𝐸𝐴-
"#
"%
=
%1%!$

+ 	𝐾[𝑈(𝑡) − 𝑢(𝑥*, 𝑡] + 𝐶2 @𝑈̇(𝑡) −
"#(%!,')

"'
B, (5) 

 

 

where  𝐿* is the length of the second rod segment, 𝐴-  is the cross-sectional area of third rod 
segment, 𝐾 and 𝐶2 denote, respectively, the stiffness and damping of the MSD system, 𝑈(𝑡)  
is the axial displacement of the lumped mass 𝑀, and its motion is governed by an ordinary 
differential equation (ODE) 

 

𝑀𝑈̈(𝑡) + 𝐶2 @𝑈̇(𝑡) −
"#(%!,')

"'
B + 𝐾[𝑈(𝑡) − 𝑢(𝑥*, 𝑡] = 0,	 (6) 

 

 

where the over-dot denotes derivative with respect to time. Note that displacement continuity 
conditions need to be satisfied at 𝑥 = 𝑥0 and 𝑥 = 𝑥*; they are given by 

 

𝑢(𝑥03, 𝑡) = 𝑢(𝑥04, 𝑡) = 𝑢(𝑥0, 𝑡), 
(7) 

 

 

𝑢(𝑥*3, 𝑡) = 𝑢(𝑥*4, 𝑡) = 𝑢(𝑥*, 𝑡), 
(8) 

 

 

The system is initially at rest; hence the initial conditions are 
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𝑢(0, 𝑡) = 0, "#(%,!)
"'

= 0, 𝑈(0) = 0, 𝑈̇(0) = 0,	 (9) 
 

 

Since the lumped mass is connected to the rod element via the spring and damper, we obtain 
a system of coupled partial differential equation (PDE) in (1) and ODE in (6). The set of coupled 
PDE-ODE with boundary conditions (2) - (5) and zero initial conditions (9) represents a closed 
system to simulate the dynamics of the advanced hammer-intensifier system. 

To reduce the number of parameters in the coupled PDE-ODE system, the model was 
reformulated in a dimensionless form see Annex A. The rod-MSD (reformulated) model was 
first solved in the frequency domain using the transfer matrix method (with use of MATLAB), 
which is commonly used to solve the dynamic responses of a linear system with force or 
displacement input applied only at the system boundaries. The coupled system of PDE and 
ODE, was afterwards solved in the time domain using the semi-discretization method, in which 
the PDE is discretized into a system of ODEs numerically integrated using MATLAB. 

2.2 Simulation Results 

2.2.1 Comparison between Different Approaches 
The values of dimensional and dimensionless parameters of the rod-intensifier system used in 
the simulation are listed, respectively, in Table 1 and Table 2, which are served as the 
benchmark values for parametric analysis. The time simulation results of the displacements at 
𝜉 = 1 and the lumped mass are presented in Figure 2, which show the harmonic variation of 
the displacement with the same frequency as the excitation frequency. Impedance matching 
boundary condition for 𝜉/ = 59.27 is used in the simulations. A transient response can be seen 
in the lumped mass displacement. However, the magnitude of the displacements in steady-
states are 12.57 𝜇𝑚 and 0,64 𝜇𝑚 for the rod at 𝜉 = 1 and lumped mass, respectively. The 
magnitude of displacements obtained using the transfer matrix method for the rod at 𝜉 = 1 and 
lumped mass is 12.57 𝜇𝑚 and 0,64 𝜇𝑚, which is exactly the same as those obtained in the 
time domain simulation. 

 

Table 1: Benchmark values of dimensional parameters. 
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Table 2: Benchmark values of dimensionless parameters. 

 

 
(a) 

 
(b) 

Figure 2: Time simulation results of the displacement (a) at 𝜉 = 1 and (b) the lumped mass. 

 
(a) 

 
(b) 

Figure 3: Parametric studies of the influences of (a) 𝜂 and (b) 𝛽 on the lumped mass 
displacement. 

 

2.3 Influence of the Excitation Frequency 
Since the simulation results using the transfer matrix and the finite difference method are the 
same, the transfer matrix method is then used for parametric studies due to its computational 
efficiency. The influence of the excitation frequency η! and the stiffness ratio β on the intensifier 
displacement are shown in Figure 3 Figure 5. We can see from Figure 3a that the maximum 
displacement is achieved when the excitation frequency is the same as the natural frequency 
of the lumped mass. When the rod parameters remain unchanged, the variation of parameter 
β = 56"

7.
 reflects the change of the spring stiffness. We can thus infer from Figure 3b that 

decreasing the spring stiffness increases the intensifier displacement. 
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2.4 Conclusions of the Section 
We have described a linear model of the hammer-intensifier system with a fixed boundary 
condition applied at the bit end and a damper attached to the right end to represent the 
impedance matching boundary condition. Furthermore, a harmonic force representing the 
interaction between the bit and hammer assembly is applied at the rod and the intensifier 
system simplified as a MSD system is attached to the rod. The dynamics of the rod is governed 
by a PDE, while the dynamics of the lumped mass is governed by an ODE, which is coupled 
with the PDE through the concentrated force associated to the MSD system. Scaling analysis 
of the model is carried out to reduce the number of parameters. This model is solved in the 
frequency domain using the transfer matrix method and in the time domain using the finite 
difference method. The simulation results using both approaches agree well with each other. 
On this basis, we studied the influence of the β and η on the axial displacement of the 
intensifier. As expected, the intensifier displacement achieves maximum value at the resonant 
frequency, but it decreases rapidly when the excitation frequency is larger than the resonant 
frequency. Also, the intensifier displacement increases gradually with increasing β, a number 
reflecting the compliance of the intensifier spring. 

3 Non-Linear Model 
This section describes a non-linear model of the hybrid HPWJ-PD system. Three key 
improvements have been made to the model presented in Sect. 2. First, a more detailed model 
of the HPWJ intensifier is constructed. With this model, the pressure inside the HPWJ, a key 
parameter determining whether the water jetted by the HPWJ can help break the rock, can be 
estimated. Second a bi-linear spring model is introduced to describe the bit-rock interaction in 
a more realistic way. Finally, two rheological models of the mud, Herschel–Bulkley and 
Casson, have been adopted to estimate the damping coefficient caused by the drilling mud. 

 

3.1 Mathematical Model 

3.1.1 Overview of the Model 
Following Sect. 2.1, the drill bit, the hammer, and the drill string in the advanced HPWJ-PD 
model are modeled as three elastic rods, see Figure 4(a). A bi-linear spring representing the 
bit-rock interaction law is attached to the bit end, see Figure 4(b). In contrast, the impedance 
matching boundary condition is applied at the right end of the drill string, represented by a 
damper. The interaction between the bit and the hammer is simplified as a harmonic excitation 
𝐹!𝑠𝑖𝑛(𝜔!𝑡)	exerted at the interface between the bit and the hammer. Finally, the HPWJ 
intensifier is simplified as a mass-spring-damper (MSD) system attached to the interface 
between the hammer and the drill string. A nonlinear damper is introduced to represent the 
expulsion of fluid from the pressure intensifier, see Figure 4(c). 
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Figure 4: (a) Schematic diagram of the HPWJ-PD system. (b) Bi-linear bit-rock interaction 
law considering both loading and unloading processes. (c) 

 

3.1.2 Dynamics of the System 
Taking into account the nonlinear damping force 𝑓8(𝑥, 𝑡) caused by the drilling fluid (see Sect. 
3.1.3), the axial dynamics of the system is obtained as: 

 

 "#!(%,')
"'!

− 𝑐* "#
!(%,')
"%!

+ 𝑓8(𝑥, 𝑡) = 0,						𝑖 = 1, 2, 3.   (10) 
 

 

The boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿 are given respectively by  

 

𝐸𝐴0
"#(!,')
"%

+ 𝐹9 = 0, (11) 
 

 

𝐸𝐴-
"#(.,')
"%

= −𝐶/
"#(.,')
"'

, (12) 
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where 𝐹9 is the bit-rock interaction force, see Sect. 3.1.4. The concentrated force at 𝑥0 = 𝐿0, 
representing the bit-hammer interaction, is expressed as 

 

𝐸𝐴0
"#
"%
=
%1%"#

= 𝐸𝐴*
"#
"%
=
%1%"$

−	𝐹!𝑠𝑖𝑛(𝜔!𝑡), (13) 
 

 

Similarly, the concentrated force at 𝑥* = 𝐿0 + 𝐿* exerted by the HPWJ intensifier to the rod is 
given by 

 

𝐸𝐴*
𝜕𝑢
𝜕𝑥
Q
%1%!#

+ 𝐹8:'| = 𝐸𝐴-
𝜕𝑢
𝜕𝑥
Q
%1%!$

+ 	𝐾[𝑈(𝑡) − 𝑢(𝑥*, 𝑡], 
(14) 

 

 

The motion of the plunger is governed by the following ODE: 

 

𝑀𝑈̈(𝑡) + 𝐾[𝑈(𝑡) − 𝑢(𝑥*, 𝑡] = 𝐹8:'	
(15) 

 

 

where 𝐹8:' is the nonlinear damping force introduced by the intensifier, which is discussed in 
Sect. 3.1.5. The displacement continuity conditions need to be satisfied at 𝑥 = 𝑥0 and 𝑥 = 𝑥*; 
they are given by: 

 

𝑢(𝑥03, 𝑡) = 𝑢(𝑥04, 𝑡) = 𝑢(𝑥0, 𝑡), 
(16) 

 

 

𝑢(𝑥*3, 𝑡) = 𝑢(𝑥*4, 𝑡) = 𝑢(𝑥*, 𝑡), 
(17) 

 

 

The system is initially at rest; hence the initial conditions are 

 

𝑢(0, 𝑡) = 0, "#(%,!)
"'

= 0, 𝑈(0) = 0, 𝑈̇(0) = 0,	 (18) 
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3.1.3 Damping Force Models of the Drilling Fluid 
In this section, two different models are introduced to describe the damping force 𝑓8(𝑥, 𝑡) 
caused by the drilling fluid. The simulation results with the two models are then compared to 
evaluate their influences on the efficiency of energy harvesting. 

To begin with, according to the Herschel–Bulkley model [1], the damping force 𝑓8(𝑥, 𝑡) is given 
by: 

 

𝑓8(𝑥, 𝑡) =
;<%
,=%

S𝜏>? + 𝑘@
A&

∆%
&U 𝑠𝑔𝑛(𝑣),						1 = 1, 2, 3, 	 (19) 

 

 

 where the index 𝑖 is determined by: 

 

𝑖 = X
1					0 < 𝑥 < 𝑥0
2				𝑥0 < 𝑥 < 𝑥*
3				𝑥* < 𝑥 < 𝑥-

, 	 (20) 
 

 

and 𝑠𝑔𝑛(𝑣)is the sign function: 

 

𝑠𝑔𝑛(𝑣) = X
1					𝑣 > 0
0					𝑣 = 0
−1			𝑣 < 0

, 	 (21) 
 

 

with 𝑣 = "#(%,')
"'

 denotes the rod velocity. 

For the sake of simplicity, the drill bit, the hammer, and the drill string are all modeled as circular 
hollow cylinders with 𝐷0, 𝐷*, and 𝐷- denoting their outer diameters, respectively. In (19) 𝜏>? ∈
[3, 7] (Pa) is the Herschel–Bulkley yield stress;	𝑘@ ∈ [0, 5] (Pa.sm) is the fluid consistency index;	
𝑚 ∈ [0, 1]	is the power-law exponent. In equation (19), ∆8  is the thickness of the mud layer: 

 

∆8=
<'3<%

*
,						1 = 1, 2, 3, 	 (22) 

 

 

where 𝐷C is the inner diameter of the wellbore. 

In contrast, according to the Casson rheological model [1], the damping force 𝑓8(𝑥, 𝑡) is 
determined by: 
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𝑓8(𝑥, 𝑡) =
;<%
,=%

S𝜏D? + 𝜇
A
∆%
+ 28𝜇𝜏D?

A
∆%
U 𝑠𝑔𝑛(𝑣),						1 = 1, 2, 3, 	 (23) 

 

 

where 𝜏D? ∈ [0,14] (Pa) is the Casson yield stress and 𝜇 ∈ [0,1] (Pa.s) is the Casson plastic 
viscosity. 

3.1.4 Bit-Rock Interaction 
According to the experimental data in [2][3], the bit-rock interaction in PD can be described by 
a bi-linear spring model illustrated in Figure 4(b). 

 

𝐹9 = `
𝑘9𝛿,				𝛿 > 0, 𝛿̇ > 0

𝑘9𝛿2 + 𝛾E𝑘9(𝛿 − 𝛿2) = 0,				𝛿 > 0, 𝛿̇ < 0
0,				𝛿 < 0,

, 	 (24) 
 

 

where 𝐹9 is the force interaction between the drill bit and rock;	𝛿 is the penetration of the bit; 
and 𝑚 is the maximum penetration in the loading process. In the loading process (𝛿 > 0, 𝛿̇ >
0), the stiffness of the spring is 𝑘9. In contrast, this stiffness changes to 𝛾E𝑘9 in the unloading 
process (𝛿 > 0, 𝛿̇ < 0). When the penetration 𝛿 < 0, the bit loses contact with the rock and the 
interaction force is zero. It is noted that the penetration 𝛿	can be determined by the 
displacement at the left end the drill bit: 

 

𝛿 = −𝑢(0, 𝑡). 	 (25) 
 

 

3.1.5 Mechanism of the Intensifier 
In (15), the nonlinear damping force 𝑓8:'(𝑡) is caused by the fluid inside the intensifier, see 
Figure 4(c). 

 

𝑓8:'(𝑡) = 𝑝(𝑡)𝐴. 	 (26) 
 

 

where 𝑝(𝑡) is the pressure of the fluid inside the HPWJ intensifier and 𝐴 is the cross-sectional 
area of the intensifier. Here the pressure of the fluid inside the HPWJ 𝑝(𝑡)	is assumed to be 
that of the fluid at the plunger. 

By ignoring the gravity and by viewing the fluid inside the HPWJ as an ideal fluid - a fluid that 
is incompressible and has no viscosity, the fluid flow inside the HPWJ is governed by the 
Bernoulli’s equation: 
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𝑝(𝑡) + ,'A(!

*
= 𝑝: +

,'A)!

*
, 	 (27) 

 

 

where 𝜌C is the density of the fluid. 𝑝: and 𝑣: are the pressure and the velocity of the fluid at 
the nozzle. 𝑣F is the relative velocity between the plunger and the cylinder of the HPWJ fixed 
to the rod system: 

 

𝑣F =
"#(%!,')

"'
− 𝑈̇(𝑡), (28) 

 

 

It is noted that the intensifying process occurs when 𝑣F	> 0 . 

At the nozzle, the flow rate of the fluid is determined through 

 

𝑄 = 𝐴:𝑣:, 	
(29) 

 

 

Where 𝐴: is the cross-sectional area of the outlet of the nozzle. For an incompressible fluid, 
the same flow rate can also be calculated at the cross-section under the plunger: 

 

𝑄 = 𝐴𝑣F. 	
(30) 

 

 

Substitute (29) and (30) into (31), we have: 

 

𝑝(𝑡) − 𝑝: =
,'HI

*
*)
J
!
30KA(!

*
, 	

(31) 
 

 

Given that 𝐴 ≫ 𝐴: ( =
=)
≫ 1), (31) is simplified to 

𝑝(𝑡) − 𝑝: ≈
,'I

*
*)
J
!
A(!

*
, 	

(32) 
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According to [4], the pressure at the outlet of the nozzle is set to 𝑝:, which results in 

 

𝑝(𝑡) ≈
,'I

*
*)
J
!
A(!

*
, 	

(33) 
 

 

For the case 𝑣F < 0, the pressure 𝑝(𝑡)	is artificially set to zero for the sake of simplicity. In 
summary we have 

 

𝑝(𝑡) = `
,'I

*
*)
J
!
A(!

*
		 			𝑣F > 0			

0																𝑣F ≤ 0
, 	 (34) 

 

 

The term 𝑓8:'(𝑡) = 𝑝(𝑡)𝐴 can be viewed as a nonlinear damper in (14) and (15). Moreover, the 
pressure 𝑝(𝑡)	is also a key parameter evaluating whether or not the water jetted by the 
intensifier can help break the rock. Similar to Sect. 2.1, we obtained a system of coupled PDE-
ODE with boundary conditions (11) - (14) and zero initial conditions (18), representing a closed 
system to simulate the dynamics of the advanced HPWJ-PD system. 

To reduce the number of parameters in the coupled PDE-ODE system, the model is 
reformulated in a dimensionless form see Annex B. The reformulated coupled PDE-ODE 
system was solved using a semi-discretization method, where the PDE is discretized into a 
system of ODEs. The entire system of ODEs was numerically integrated in MATLAB using the 
Runge-Kutta method. 

3.2 Simulation Results 

3.2.1 Comparison between Two Damping Coefficient Models 
The values of dimensional parameters of the rod-intensifier system used in the simulation are 
listed in Table 3, which serve as the benchmark values for parametric analysis. Figure 5 
illustrates the movement of the plunger of the HPWJ intensifier predicted using the Herschel–
Bulkley model (𝜏>? = 5 Pa, 𝑚 = 0.5, and 𝑘@ = 2.5 Pa.sm) and the Casson model (𝜏D?= 7 Pa and 
𝜇 = 0.5 Pa.s). The transient responses of the plunger simulated by the two models agree well 
with each other. Both of them are decreasing because of the damping effect of the fluid inside 
the HPWJ, and their frequencies are both close to the natural frequency of the MSD. In 
contrast, the steady state responses predicted by the two models are different. However, both 
of them are one order of magnitude smaller than the transient responses. This is because the 
frequency of the excitation is much higher than the natural frequency of the HPWJ intensifier. 
In this case, the damping effect of the drilling mud is not a key factor that affects the amplitude 
of the vibration of the HPWJ intensifier. The proposed statement is further convinced by a 
parametric analysis. As shown in Figure 6(a-e), neither the selection of damping coefficient 
models nor the parameters used in these models show a remarkable influence on the pressure 
inside the HPWJ intensifier, In contrast, the pressure of the intensifier is significantly affected 
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by the dimensionless parameter 𝜂! = 𝜔!𝑡∗ = 𝜔!8
M
7

 , see Figure 6(f), and the best performance 

is achieved when 𝜂! is close to 1. Physically, 𝜂! is the ratio between the frequency of the 
harmonic excitation (𝑓N) and the natural frequency of the intensifier (𝑓:): 

𝑓O =
P+
*;

,   				𝑓: =
0
*;
87
M

,   				𝜂! = 𝜔!8
M
7
= @,

@)
  	 (35) 

 

When and only when the frequency of the harmonic excitation is close to the natural frequency 
of the intensifier, the intensifier is fully “excited” and the vibration energy of the drill string can 
be efficiently harvested. 

 

Table 3: Benchmark values of dimensional parameters. 

 

Figure 5: Displacement of the plunger as a function of scaled time 𝜏, simulated using the 
Herschel–Bulkley model (𝜏>? = 5 Pa, 𝑚 = 0.5, and 𝑘@ = 2.5 Pa.sm) and the Casson model 

(𝜏D?= 7Pa and 𝜇 = 0.5 Pa.s). 

 



ORCHYD                        D6.4 – Modelling of hammer drilling and vibrations response for use of intensifier downhole 

  17 

 
Figure 6: The influence of several factors on the maximum pressure inside the HPWJ 

intensifier: Herschel–Bulkley model parameters (a) 𝜏>? , (b) 𝑚, and (c) 𝑘@ ; Casson model 
parameters (d) 𝜏D? and (e) 𝜇; and the dimensionless parameter 𝜂0. 

 

3.2.2 Influence of the Bit-Rock Interface 
In this section the influences of the bit-rock interface parameters (𝛽9 and 𝛾E) on the efficiency 
of the intensifier are analysed. Broadly speaking, the maximum pressure increase 𝑝2 inside 
the HPWJ intensifier decreases as the dimensionless parameter 𝛽9 increases, see Figure 7. 
Here 𝛽9 = 𝑘9𝐿/𝐸𝐴0 describes the ratio between the stiffness of the bit-rock interface and that 
of the drill string. The highest pressure increase is obtained when 𝛽9 = 0, because there is no 
energy dissipation if the bit-rock interface is removed. 

Meanwhile. the maximum pressure inside the intensifier also decreases when the parameter 
𝛾E increases, see Figure 8. This can be explained from the loading-unloading loop of the bi-
linear spring. As illustrated in Figure 9 the triangle formed by the loading process, the unloading 
process, and the δ-axis reflects the energy dissipation in one loop. The area of this triangle 
increases when 𝛾E increases, therefore more energy are dissipated and the pressure inside 
the intensifier decreases 

 

Figure 7: The maximum pressure increase 𝑝2 as a function of 𝛽9 (𝛾E = 4). 
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Figure 8: The maximum pressure increase 𝑝2 as a function of 𝛾E(𝛽9= 0.1). 

 

Figure 9: Energy dissipation in the loading-unloading loop of the bi-linear spring. 

 

3.3 Conclusions of the Section 
An advanced non-linear model of the hybrid HPWJ-PD system was provided, where three key 
improvements have been made over the linear model introduced in Sect. (2). First, the 
Herschel–Bulkley and Casson models were used to describe the damping effect of the drilling 
mud. Second, a bi-linear spring model was introduced to describe the bit-rock interaction in 
the percussive drilling process. Finally, the mechanism of the HPWJ intensifier was analysed 
using fluid dynamics (the Bernoulli’s equation), through which the pressure of the fluid inside 
the intensifier can be estimated. By coupling a PDE governing the dynamics of the drill string 
and an ODE governing the dynamics of the intensifier, a PDE-ODE model was established to 
describe dynamics behavior of the HPWJ-PD system. Scaling analysis of the model was 
carried out to identify the key influencing parameters, and a semi-discretization method was 
adopted to solve the scaled model numerically. Parametric analysis shown that the key factor 
affecting performance of the HPWJ intensifier is the ratio of the frequency of the harmonic 
hammer excitation and the natural frequency of the intensifier, and the best performance is 
achieved when this ratio is close to one. Moreover, the influences of dimensionless bit-rock 
interface parameters 𝛽9 and  𝛾E on maximum pressure increase 𝑝2 inside the intensifier were 
analysed. Simulation results shown that the efficiency of energy harvesting decreases as 𝛽9 
and 𝛾E increases. 
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4 Conclusions 
This report has described a linear and a nonlinear model of a hybrid High Pressure Water-
Jetting (HPWJ) and percussive drilling (PD) system. Both models treat the drill bit, the hammer, 
and the drill string as a rod system and describe the HPWJ intensifier as a mass-spring-damper 
(MSD) system. The linear model assumes a fixed boundary condition at the bit-rock interface, 
a linear damping coefficient along the rod system, and a linear damper inside the MSD. In 
contrast, the nonlinear model introduces a bi-linear bit-rock interface law, two different damping 
effect models (the Herschel–Bulkley and Casson models), and a nonlinear damper model 
obtained from the mechanism of the HPWJ intensifier. By coupling a PDE governing the 
dynamics of the rod and an ODE governing the dynamics of the MSD, both linear and non-
linear models are described by a PDE-ODE system. Scaling analysis of the two models are 
carried out to identify the key influencing parameters, and a semi-discretization method is 
adopted to solve, in the time domain, the scaled models numerically. The linear model is also 
analysed in the frequency domain using the Transfer Matrix Method, whose results are 
consistent those simulated in the time domain and demonstrate the reliability of the semi-
discretization algorithm. A parametric analysis has identified the following two groups of 
dimensionless parameters affecting the efficiency of energy harvesting. 

• Dimensionless parameters associated with the structural design: (i) 𝜂! the ratio 
between the frequency of the harmonic excitation and the natural frequency of the 
intensifier (MSD) and (ii) 𝛽 the ratio between the rod stiffness and the spring stiffness 
in the MSD. The best performance is achieved when this ratio 𝜂! is close to one and 
the efficiency of energy harvesting increases as 𝛽 increases. 
 

• Dimensionless parameters associated with the bit-rock interface: (i) 𝛽9 the ratio 
between the stiffness of the bit-rock interface and that of the rod and (ii) 𝛾E the ratio 
between the stiffness of the bit-rock interface in the loading process and that in the 
unloading process. The efficiency of energy harvesting decreases as 𝛽9 and 𝛾E  
increase. 
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Appendix A. HPWJ-PD linear model scaling  
To reduce the number of parameters in the coupled PDE-ODE system, the model is 
reformulated in a dimensionless form by introducing scales for length (𝐿∗), time (𝑡∗), force (𝐹∗), 
and displacement (𝑈∗). Here we choose 

 

𝐿∗ = 𝐿, 𝑡∗ = 8M
7
,						𝐹∗ = 𝐹!, 					𝑈∗ =

Q+.
+="

.		  	 (36) 
 

 

where 𝐿∗ is the total length of the rod,	𝑡∗ is proportional to the period of free vibrations of the 
spring-mass system, 𝐹∗ is amplitude of the force excitation, and 𝑈∗ is and the change of length 
of the rod under the static load 𝐹∗. With these scales, we can define the following dimensionless 
variables. 

 

𝜉 =
𝑥
𝐿
, 𝜏 =

𝑢(𝑥, 𝑡)
𝑈∗

, 𝑢(𝜉, 𝜏) =
𝑢(𝑥, 𝑡)
𝑈∗

, 𝑈(𝜏) =
𝑈(𝑡)
𝑈∗

,

𝐹(𝜉, 𝜏) =
𝐹(𝑥, 𝑡)
𝐹!

, 𝑃(𝜏) =
𝑃(𝑡)
𝐹!

, 

  	

(37) 
 

 

where 𝑢(𝜉, 𝜏) and 𝐹(𝜉, 𝜏)) are the displacement and force associated with the rod, respectively; 
𝑈(𝜏) and 𝑃(𝜏) are the displacement and force associated with the MSD system, respectively. 
Hence, the set of coupled PDE-ODE can be reformulated in a dimensionless form as 

 

𝜕*𝑢
𝜕𝜏*

+ 𝜁)
𝜕𝑢
𝜕𝜏

− 𝜅*
𝜕*𝑢
𝜕𝜉*

= 0 

  	

(38) 
 

 

𝑈̈ + 𝜁2 l𝑈̇ −
𝜕𝑢(𝜉*, 𝜏)

𝜕𝜏
m + n𝑈 − 𝑢(𝜉*, 𝜏)o = 0 

  	

(39) 
 

 

where 𝜅 = O'∗
.

 is the ratio of the wavelength over the total rod length, 𝜁) = 𝑘)𝑡∗ is the 

dimensionless viscous damping coefficient, and 𝜁2 =	 D&'∗
M

 is the dimensionless damping 
coefficient of the damper of MSD system. The scaled boundary/interface conditions for the 
rod-MSD system read 
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𝑢(0, 𝜏) = 0,		 
  	

(40) 
 

 

𝜕𝑢
𝜕𝜉
p
R1R"#

= 𝛼0
𝜕𝑢
𝜕𝜉
p
R1R"$

+ 	𝑠𝑖𝑛(𝜂!𝜏), 

  	

(41) 
 

 

𝜕𝑢
𝜕𝜉
p
R1R!#

= 𝛼*
𝜕𝑢
𝜕𝜉
p
R1R!$

+	
1
𝛼0𝛽

n𝑈 − 𝑢(𝜉*, 𝜏)o +
𝜁2
𝛼0𝛽

l𝑈̇ −
𝜕𝑢(𝜉*, 𝜏)

𝜕𝜏
m, 

  	

(42) 
 

 

𝜕𝑢
𝜕𝜉
p
R10

= −	
𝜁/

𝛼0𝛼*𝛽
𝜕𝑢
𝜕𝜏
p
R10

, 

  	

(43) 
 

 

where 𝛼0 =	
="
=!

 and 𝛼* =	
=!
=/

 are the ratios of different rod cross sectional area, 𝜂! = 𝜔!𝑡∗ is 

the dimensionless excitation frequency, 𝛽 = +="
7.

 is the ratio between rod stiffness and spring 

stiffness,	𝜁/ =
D0'∗

7
 is the dimensionless damping coefficient of the damper attached to the 

rod. The scaled continuity and initial conditions are given by 

 

𝑢(𝜉03, 𝜏) = 𝑢(𝜉04, 𝜏) = 𝑢(𝜉0, 𝜏)		 
  	

(44) 
 

 

𝑢(𝜉*3, 𝜏) = 𝑢(𝜉*4, 𝜏) = 𝑢(𝜉*, 𝜏)		 
  	

(45) 
 

 

𝑢(𝜉, 𝜏) = 0,
𝜕𝑢(𝑥, 0)
𝜕𝑡

= 0, 𝑈(0) = 0, 𝑈̇(0) = 0		 
  	

(46) 
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Appendix B. HPWJ-PD non-linear model scaling  
In this section, scaling is conducted using the same scales described in Appendix A, and the 
following additional dimensionless variables are introduced: 

 

𝑓8(𝜉, 𝜏) =
𝑓8(𝑥, 𝑡)𝑡∗*

𝑈∗
, 𝐹8:' =

𝐹8:'
𝐹∗

, 𝐹9 =
𝐹9
𝐹∗
.			 

  	

(47) 
 

where 𝑓8(𝜉, 𝜏) is the scaled damping term along the rod system, 𝐹8:' is the scaled damping 
force of the intensifier and 𝐹9 is the scaled cutting force. 

Hence, the set of coupled PDE-ODE can be reformulated in a dimensionless form as 

 

𝜕*𝑢
𝜕𝜏*

− 𝜅*
𝜕*𝑢
𝜕𝜉*

+ 𝑓8(𝜉, 𝜏) = 0, 

  	

(48) 
 

 

𝑈r̈ + [𝑈r − 𝑢(𝜉*, 𝜏)] = 𝛽𝐹8:' . 
  	

(49) 
 

 

where 𝜅 and 𝛽 are numbers: 

 

𝜅 =
𝑐𝑡∗
𝐿
, 𝛽 =

𝐹∗
𝐾𝑈∗

. 

  	

(50) 
 

 

In fact,	𝜅 and 𝛽 can be viewed as ratios of scales. To begin with, the time and length scales 
associated with the MSD system (ODE) are 

 

𝑡∗2 = s𝑀
𝐾
, 𝑙∗2 =

𝐹∗
𝐾
	.	 

  	

(51) 
 

 

In contrast, the time and length scales associated with the rod system (PDE) are 
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𝑡∗S =
𝐿
𝑐
, 𝑙∗S =

𝐹∗𝐿
𝐸𝐴0

	. 

  	

(52) 
 

In this report, 𝑡∗2 and 𝑙∗S 	are selected as the “hybrid” time and length scales of the PDE-ODE 
system, i.e., 𝑡∗ = 𝑡∗2and 𝑈∗ = 𝑙∗S. From this perspective,	𝜅 can be viewed as the ratio of the time 
scale associated with the ODE system over that associated with the PDE system, and 𝛽 is the 
ratio of the ODE time scale 𝑡∗2 over that of the PDE length scale 𝑙∗S : 

 

𝜅 =
𝑡∗2

𝑡∗S
, 𝛽 =

𝑙∗2

𝑙∗S
 

  	

(53) 
 

 

While using the Herschel–Bulkley model, the scaled damping term in (48) reads 

 

𝜕*𝑢
𝜕𝜏*

− 𝜅*
𝜕*𝑢
𝜕𝜉*

+ 𝑓8(𝜉, 𝜏) = 0, 

  	

(54) 
 

 

𝑓8̅(𝜉, 𝜏) = n𝜏>̅8 + 𝜅̅@8𝑢v̇2o𝑠𝑔𝑛(𝑢v̇), 𝑖 = 	1, 2, 3,			 
 

  	

(55) 
 

where 𝑢v̇ = 	 "#
"T

, and 𝜏̅>8 and 𝜅̅@8 are dimensionless scalars 

 

𝜏>̅8 =
𝜋𝐷8𝑡∗*𝜏>?
𝜌𝐴8𝑈∗

, 𝜅̅@8 =
𝜋𝐷8𝑡∗*32𝑘@
𝜌𝐴8𝑈∗032Δ82

. 

 
  	

(56) 
 

 

While using the Casson model, the scaled damping term becomes 

 

𝑓8̅(𝜉, 𝜏) = @𝜏D̅8 + 𝜇̅8𝑢v̇ + 2y𝜏D̅8𝜇̅8y𝑢v̇B 𝑠𝑔𝑛(𝑢v̇), 𝑖 = 	1, 2, 3,			 
 

  	

(57) 
 

where 𝜏D̅8, 𝜇̅8 and ζ are dimensionless scalars 
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𝜏D̅8 =
𝜋𝐷8𝑡∗*𝜏D?
𝜌𝐴8𝑈∗

, 𝜇̅8 =
𝜋𝐷8𝑡∗𝜇
𝜌𝐴8Δ8

. 

 
  	

(58) 
 

The scaled damping force of the intensifier in (49) is 

 

𝐹8:' = `
𝜀 @"#(R!,')

"T
− 𝑈ṙ(𝑡)B

*
						"#(R!,')

"T
− 𝑈ṙ(𝑡) > 0			

0																																				 "#(R!,')
"T

− 𝑈ṙ(𝑡) ≤ 0
, 	 (59) 

 

 

 

𝜀 =
𝜌P𝐴-𝑈∗*

2𝐴:*𝐹∗𝑡∗*
 

 
  	

(60) 
 

The scaled boundary/interface conditions for the rod-MSD system read 

 

𝜕𝑢(0, 𝜏)
𝜕𝜉

+ 𝐹9 = 0,		 

  	

(61) 
 

 

𝜕𝑢
𝜕𝜉
p
R1R"#

= 𝛼0
𝜕𝑢
𝜕𝜉
p
R1R"$

− 	𝑠𝑖𝑛(𝜂!𝜏), 

  	

(62) 
 

 

𝜕𝑢
𝜕𝜉
p
R1R!#

+	
1
𝛼0
𝐹8:' = 𝛼*

𝜕𝑢
𝜕𝜉
p
R1R!$

+	
1
𝛼0𝛽

n𝑈 − 𝑢(𝜉*, 𝜏)o, 

  	

(63) 
 

 

𝜕𝑢
𝜕𝜉
p
R10

= −	
𝜁/

𝛼0𝛼*𝛽
𝜕𝑢
𝜕𝜏
p
R10

, 

  	

(64) 
 

In (61) the scaled bit-rock interaction force is determined by 
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𝐹9 =

⎩
⎨

⎧ −𝛽9𝑢(0, 𝑡),							𝑢(0, 𝑡) < 0, "#(!,')
"T

< 0			

𝛽9𝛿2 − 𝛾E𝛽9n𝑢(0, 𝑡) + 𝛿2o = 0,					𝑢(0, 𝑡) < 0, "#(!,')
"T

> 0,
0,								𝑢(0, 𝑡) > 0

 	 (65) 
 

 

with 𝛽9 = 𝑘9𝐿/𝐸𝐴0  denoting the ratio between the stiffness of the bit-rock interface and that 
of the rod, and 𝛿2	denoting the maximum 𝑢(0, 𝑡) during the loading process. The scaled 
continuity and initial conditions are given by: 

 

𝑢(𝜉03, 𝜏) = 𝑢(𝜉04, 𝜏) = 𝑢(𝜉0, 𝜏)		 
  	

(66) 
 

 

𝑢(𝜉*3, 𝜏) = 𝑢(𝜉*4, 𝜏) = 𝑢(𝜉*, 𝜏)		 
  	

(67) 
 

 

𝑢(𝜉, 𝜏) = 0,
𝜕𝑢(𝑥, 0)
𝜕𝑡

= 0, 𝑈(0) = 0, 𝑈̇(0) = 0		 
  	

(68) 
 

 


